Sign up FAST! Login

Pandas is an open source, BSD-licensed library providing data structures and analysis tools for the Python programming language

Python Data Analysis Library

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

0.14.1 released (July 11, 2014)Announcing v0.14.1, a minor release from 0.14.0. This release includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

We recommend that all users upgrade to this version. See the Release Notes to read all about it.

For binaries and source archives of v0.14.1 see the Download page.

Quick vignette10-minute tour of pandas from Wes McKinney on Vimeo.

What problem does pandas solve?Python has long been great for data munging and preparation, but less so for data analysis and modeling. pandas helps fill this gap, enabling you to carry out your entire data analysis workflow in Python without having to switch to a more domain specific language like R.

Combined with the excellent IPython toolkit and other libraries, the environment for doing data analysis in Python excels in performance, productivity, and the ability to collaborate.

pandas does not implement significant modeling functionality outside of linear and panel regression; for this, look to statsmodels and scikit-learn. More work is still needed to make Python a first class statistical modeling environment, but we are well on our way toward that goal.

What do our users have to say? 

Roni Israelov, PhD

Portfolio Manager

AQR Capital Management

pandas allows us to focus more on research and less on programming. We have found pandas easy to learn, easy to use, and easy to maintain. The bottom line is that it has increased our productivity.”

David Himrod

Director of Optimization & Analytics


pandas is the perfect tool for bridging the gap between rapid iterations of ad-hoc analysis and production quality code. If you want one tool to be used across a multi-disciplined organization of engineers, mathematicians and analysts, look no further.”

Olivier Pomel



“We use pandas to process time series data on our production servers. The simplicity and elegance of its API, and its high level of performance for high-volume datasets, made it a perfect choice for us.”

Library HighlightsA fast and efficient DataFrame object for data manipulation with integrated indexing;Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form;Flexible reshaping and pivoting of data sets;Intelligent label-based slicingfancy indexing, and subsetting of large data sets;Columns can be inserted and deleted from data structures for size mutability;Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets;High performance merging and joining of data sets;Hierarchical axis indexing provides an intuitive way of working with high-dimensional data in a lower-dimensional data structure;Time series-functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging. Even create domain-specific time offsets and join time series without losing data;Highly optimized for performance, with critical code paths written in Cythonor C.Python with pandas is in use in a wide variety of academic and commercialdomains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.

Stashed in: Big Data!

To save this post, select a stash from drop-down menu or type in a new one:

Well you know I like the name of this one, too.

Now they just need a catchy logo like Docker the Whale:

You May Also Like: