Sign up FAST! Login

How to see into the future - a tale of foxes, hedgehogs and superforecasters from the FT


http://www.ft.com/cms/s/2/3950604a-33bc-11e4-ba62-00144feabdc0.html#ixzz3Ce0ATxbR

Billions of dollars are spent on experts who claim they can forecast what’s around the corner, in business, finance and economics. Most of them get it wrong. Now a groundbreaking study has unlocked the secret: it IS possible to predict the future – and a new breed of ‘superforecasters’ knows how to do it

(Full text available here: http://www.ft.com/cms/s/2/3950604a-33bc-11e4-ba62-00144feabdc0.html#ixzz3Ce0ATxbR

george orwell 1984

It is true that forecasting now seems ubiquitous. Data analysts forecast demand for new products, or the impact of a discount or special offer; scenario planners (I used to be one) produce broad-based narratives with the aim of provoking fresh thinking; nowcasters look at Twitter or Google to track epidemics, actual or metaphorical, in real time; intelligence agencies look for clues about where the next geopolitical crisis will emerge; and banks, finance ministries, consultants and international agencies release regular prophecies covering dozens, even hundreds, of macroeconomic variables.

Real breakthroughs have been achieved in certain areas, especially where rich datasets have become available – for example, weather forecasting, online retailing and supply-chain management. Yet when it comes to the headline-grabbing business of geopolitical or macroeconomic forecasting, it is not clear that we are any better at the fundamental task that the industry claims to fulfil – seeing into the future.

So why is forecasting so difficult – and is there hope for improvement? And why did Babson and Keynes prosper while Fisher suffered? What did they understand that Fisher, for all his prodigious talents, did not?

In 1987, a young Canadian-born psychologist, Philip Tetlock, planted a time bomb under the forecasting industry that would not explode for 18 years. Tetlock had been trying to figure out what, if anything, the social sciences could contribute to the fundamental problem of the day, which was preventing a nuclear apocalypse. He soon found himself frustrated: frustrated by the fact that the leading political scientists, Sovietologists, historians and policy wonks took such contradictory positions about the state of the cold war; frustrated by their refusal to change their minds in the face of contradictory evidence; and frustrated by the many ways in which even failed forecasts could be justified. “I was nearly right but fortunately it was Gorbachev rather than some neo-Stalinist who took over the reins.” “I made the right mistake: far more dangerous to underestimate the Soviet threat than overestimate it.” Or, of course, the get-out for all failed stock market forecasts, “Only my timing was wrong.”

Tetlock’s response was patient, painstaking and quietly brilliant. He began to collect forecasts from almost 300 experts, eventually accumulating 27,500. The main focus was on politics and geopolitics, with a selection of questions from other areas such as economics thrown in. Tetlock sought clearly defined questions, enabling him with the benefit of hindsight to pronounce each forecast right or wrong. Then Tetlock simply waited while the results rolled in – for 18 years.

Tetlock published his conclusions in 2005, in a subtle and scholarly book, Expert Political Judgment. He found that his experts were terrible forecasters. This was true in both the simple sense that the forecasts failed to materialise and in the deeper sense that the experts had little idea of how confident they should be in making forecasts in different contexts. It is easier to make forecasts about the territorial integrity of Canada than about the territorial integrity of Syria but, beyond the most obvious cases, the experts Tetlock consulted failed to distinguish the Canadas from the Syrias.

An intriguing footnote to Philip Tetlock’s original humbling of the experts was that the forecasters who did best were what Tetlock calls “foxes” rather than “hedgehogs”. He used the term to refer to a particular style of thinking: broad rather than deep, intuitive rather than logical, self-critical rather than assured, and ad hoc rather than systematic. The “foxy” thinking style is now much in vogue. Nate Silver, the data journalist most famous for his successful forecasts of US elections, adopted the fox as the mascot of his website as a symbol of “a pluralistic approach”.

The trouble is that Tetlock’s original foxes weren’t actually very good at forecasting. They were merely less awful than the hedgehogs, who deployed a methodical, logical train of thought that proved useless for predicting world affairs. That world, apparently, is too complex for any single logical framework to encompass.

More recent research by the Good Judgment Project investigators leaves foxes and hedgehogs behind but develops this idea that personality matters. Barbara Mellers told me that the thinking style most associated with making better forecasts was something psychologists call “actively open-minded thinking”. A questionnaire to diagnose this trait invites people to rate their agreement or disagreement with statements such as, “Changing your mind is a sign of weakness.” The project found that successful forecasters aren’t afraid to change their minds, are happy to seek out conflicting views and are comfortable with the notion that fresh evidence might force them to abandon an old view of the world and embrace something new.

How to be a superforecaster:

Some participants in the Good Judgment Project were given advice on how to transform their knowledge about the world into a probabilistic forecast – and this training, while brief, led to a sharp improvement in forecasting performance.

The advice, a few pages in total, was summarised with the acronym CHAMP:

● Comparisons are important: use relevant comparisons as a starting point;

● Historical trends can help: look at history unless you have a strong reason to expect change;

● Average opinions: experts disagree, so find out what they think and pick a midpoint;

● Mathematical models: when model-based predictions are available, you should take them into account;

● Predictable biases exist and can be allowed for. Don’t let your hopes influence your forecasts, for example; don’t stubbornly cling to old forecasts in the face of news.

Read the complete article here: http://www.ft.com/cms/s/2/3950604a-33bc-11e4-ba62-00144feabdc0.html#ixzz3Ce1hw1yQ

Stashed in:

To save this post, select a stash from drop-down menu or type in a new one:

You May Also Like: