Sign up FAST! Login

Graphene: Fast, Strong, Cheap, and Impossible to Use


Graphene Fast Strong Cheap and Impossible to Use The New Yorker

Source: http://www.newyorker.com/magazine/2014/1...

Graphene may be the most remarkable substance ever discovered. But what’s it for?

Stashed in: Science!, New Yorker, Energy!, Nanotech!

To save this post, select a stash from drop-down menu or type in a new one:

The impulse to overlook obvious difficulties to commercial development is endemic to scientific research.

Geim’s paper, after all, mentioned the band-gap problem. “People knew that graphene is a gapless semiconductor,” Amirhasan Nourbakhsh, an M.I.T. scientist specializing in graphene, told me. “But graphene was showing extremely high mobility—and mobility in semiconductor technology is very important. People just closed their eyes.”

According to Friedel, the historian, scientists rely on the stubborn conviction that an obvious obstacle can be overcome. “There is a degree of suspension of disbelief that a lot of good research has to engage in,” he said. “Part of the art—and it is art—comes from knowing just when it makes sense to entertain that suspension of disbelief, at least momentarily, and when it’s just sheer fantasy.” Lord Kelvin, famous for installing telegraph cables on the Atlantic seabed, was clearly capable of overlooking obstacles. But not always. “Before his death, in 1907, Lord Kelvin carefully, carefully calculated that a heavier-than-air flying machine would never be possible,” Friedel says. “So we always have to have some humility. A couple of bicycle mechanics could come along and prove us wrong.”

Recently, some of the most exciting projects from Tour’s lab have encountered obstacles. An additive to fluids used in oil drilling, developed with a subsidiary of the resource company Schlumberger, promised to make drilling more efficient and to leave less waste in the ground; instead, barrels of the stuff decomposed before they could be used. The company that hired Tour’s group to make inflatable slides and rafts for aircraft found a cheaper lab. (Tour was philosophical about it, in part because he knew he’d still get some money from the contract. “They’ll have to come back and get the patent,” he said.) The technology for the Fukushima-reactor cleanup stalled when scientists in Japan couldn’t get the powder to work, and the postdoc who developed the method was unable to get a visa to go assist them. “You’ve got to teach them how it’s done,” Tour said. “You want the pH right.”

Tour’s optimism for graphene remains undimmed, and his group has been working on further inventions: superfast cell-phone chargers, ultra-clean fuel cells for cars, cheaper photovoltaic cells. “What Geim and Novoselov did was to show the world the amazingness of graphene, that it had these extraordinary electrical properties,” Tour said. “Imagine if one were God. Here, He’s given us pencils, and all these years scientists are trying to figure out some great thing, and you’re just stripping off sheets of graphene as you use your pencil. It has been before our eyes all this time!” ♦

You May Also Like: