Sign up FAST! Login

The engineer making meat tastier

BBC Future The engineer making meat tastier


It was in Memphis, Tennessee, that Kit Parker first began to think about teaching a class on American barbecue at Harvard. The engineering professor was wandering through a barbecue competition, studying the smokers where entrants had marinated their meat in smoke for hours on end. And he noticed something distinctly odd. “They were the most godawful contraptions you've ever seen.” The junkyard of cobbled-together smoking chambers, of all shapes and sizes and materials, told Parker something important. No one really knew how to build a perfect one yet.

Barbecue, of course, is a word that has two uses in our modern vernacular: a verb meaning to slap some meat on the grill and slather it with sauce, and a noun referring to slow-smoked meat, a staple of southern US states including Tennessee and Texas, where Parker grew up. Aficionados of the latter develop a practical knowledge of the complicated series of chemical reactions that produce the melt-in-your-mouth texture, the crusty exterior, or bark, and the particular flavours of barbecue. This spring semester, Parker, a teaching assistant, and 16 engineering students learned them as well, as a part of a quest to build a scientifically optimised smoker.

Stashed in: Meat!, Meat

To save this post, select a stash from drop-down menu or type in a new one:

It's the science of meat!

The first stage of smoking brisket, a thick cut from the chest of a cow and the Harvard team's chosen target, must proceed at a relatively low temperature. You load the smoker's bottom with charcoal and wood and lay the meat on a platform above it. Then you let the meat heat up, over the course of several hours, to above 100F (37C). It's important that it takes a while to reach that point, because just below 105F, an enzyme called calpain reaches peak productivity, as does one called cathepsin just below 123F. These enzymes' business is to cut up a fibrous protein in the meat called collagen, which is the main component of connective tissue.

Collagen is tough and chewy, and letting the enzymes attack it serves two purposes. For one, smaller pieces of collagen will coagulate into soft, tasty gelatin later on. For another, as the temperature rises, intact fibers of collagen will contract sharply and wring moisture out of the meat. Cutting up the collagen early on means less fluid will be lost later, resulting in more tender meat. (It turns out you can use this science to get more tender steak in a sous vide cooker, without the need for a smoker.)

Smoke rings

As the temperature continues to climb, the enzymes are destroyed, and the heat triggers other reactions in the meat itself, including some involving a protein called myoglobin. When there is plenty of oxygen around, myoglobin is pink. When there's not, it turns grey or tan. According to the encyclopedic and engaging, this is why meat that's been sitting around under plastic in the store turns grey – it will turn pink again if you let it breathe.

When you're smoking meat, two gasses in the smoke, nitrous oxide and carbon monoxide, interact with myoglobin on the meat's surface. While the rest of myoglobin degrades in the heat and turns grey, this time permanently, the myoglobin around the meat's edges hangs onto its pink colour, generating a prized, thin, rosy ring, called the smoke ring, around the brisket. And all the while, as the hours pass – 10, 11, 12 hours – the action of the smoke on the meat helps create a chewy coat of flavourful compounds on the outside. 

You May Also Like: