Sign up FAST! Login

Dear White House, Can We Have a Unified Microbiome Initiative?

Stashed in: Awesome, Microbiome

To save this post, select a stash from drop-down menu or type in a new one:

The result is a proposal, penned by a group of leading microbiologists, for a Unified Microbiome Initiative (UMI)—a national coordinated effort to develop the tools we need to truly unlock the secrets of the microbial world. It will do for microbes what the BRAIN Initiative is doing for neuroscience.

“We’re trying to understand the central tenets of how bacteria, fungi, and viruses organize themselves, communicate, and deal with the world in any context, whether in the human body or in soil,” says Jack Gilbert from the University of Chicago. With that knowledge, microbiologists hope to better harness microbes to produce medical drugs and biofuels, stimulate the growth of crops, and treat everything from diabetes to allergies. “I’m super-pumped about this,” adds Gilbert.

The concept of the UMI is sensibly built upon the two big pillars—better technology, and more cooperation—that have driven progress in microbiology since its birth 340 years ago.

Is there any reason why this shouldn't happen?

And what is happening with that BRAIN initiative anyway?

Chugging along...

Well keep on chugging. In the meantime I feel like I'm learning...

In 1675, The Dutch draper Antoni van Leeuwenhoek became the first human to see bacteria after building, by hand, the best microscopes of his day. In the late 19th century, scientists developed laboratory techniques for growing microbes, including those from natural environments like soil and water—now, they could work with the bugs rather than just observing them. In the 1950s, Robert Hungate created a technique for growing bacteria that recoiled in the presence of oxygen, making it easier to study the multitudes in animal guts. In the 1980s, Norm Pace, Ed DeLong, and others developed techniques for identifying bacteria through their genes, without having to grow them at all.

Each of these innovations peeled back another layer of the microbial world—but many layers remain hidden. “We obtain huge collections of genes, but roughly 50 percent are unknown,” says Jeffrey Miller from the University of California, Los Angeles. Similarly, 98 percent of the chemicals that microbes produce are unknown. “We're trying to put together an extraordinarily complex puzzle with just a fraction of the pieces.”

You May Also Like: