Sign up FAST! Login

What making music does to your brain


Stashed in: #TED, Brain, Music, For Conrad, TED Talks

To save this post, select a stash from drop-down menu or type in a new one:

Music is the most complicated sound the brain can process. But why did our brains evolve such advanced tools to create and enjoy it? 

Neuroscientist and jazz musician Charles Limb (TED Talk: Your brain on improv) has asked himself this question time and again. He recently got together with songwriter and musician Meklit Hadero (TED Talk: The unexpected beauty of everyday sounds) to discuss the relationship of music and the brain. First, he explained his working theory that music > language.

Music is the most advanced auditory stimulus there is. “When we look at the brains of humans, and how they evolved from the brains of animals, it becomes clear rather quickly that the human auditory system is capable of processing sound at an enormous level of complexity,” Limb says. “Music, I think, is the highest refinement of that complexity, meaning that as far as I know, there’s nothing in the auditory world that is harder for the brain to process than music.” And why would a biological system be capable of such a complicated task? For Limb, the answer is connected to the human ability to innovate. “The idea that you can improvise a jazz solo today is a direct reflection of the fact that our brains have this innate capacity to create and to generate novel ideas, which itself is absolutely integral to how we survived as a species,” he says. Of course, we still don’t know enough about how precisely this system evolved  — or the advantages the capacity for musical expression might confer on a species.

Yes, your brain does change when you’re composing music. For many musicians, the path to creation leads them through some very specific (often odd) behaviors. For Hadero, a musician who grew up in a household of scientists, “composition mode” is a sometimes weeks-long fugue of discovery. “I think of composition mode as a mix of discipline and mystery,” she says. She cooks constantly, for one thing, and she keeps her phone close by to record melodic ideas as they strike her. in general, she tries to “swim into a song rather than approach it solely intellectually.” She might start with vocal improvisations that sound like babble, just noises and sounds over a melody, and later she’ll excavate phrases on which a song can take shape. For his part, Limb’s quest to understand what’s actually going on in the brain during this instinctual process has shown that the area of the brain related to self-monitoring and observation deactivates when musicians are improvising, while the region linked with self-expression lights up. So Hadero’s babble in fact represents an important internal physiological change. “You’re actually changing the way your brain is functioning,” he tells her. Now the deeper challenge: to measure such changes, understand what’s really going on inside a musician’s skull — and in doing so try to get a deeper understanding of how creativity actually works.

You May Also Like: