Sign up FAST! Login

The Elon Musk interview on Mars colonisation

The Elon Musk interview on Mars colonisation, Aeon magazine:

The Elon Musk interview on Mars colonisation Ross Andersen Aeon


‘There is an argument you often hear in space circles,’ I said to Musk, ‘where people say the focus on human space travel in the near-term is entirely misplaced – ’

‘What focus? There isn’t one, you know,’ he said, cutting me off.

‘But to the extent you’re advocating for one,’ I said, ‘there is an argument that says until we ramp up technologically, we’re better off sending probes because, as you know, the presence of a single human being on a spacecraft makes the engineering exponentially more difficult.’

‘Well, we are sending probes,’ Musk told me. ‘And they are very expensive probes, by the way. They aren’t exactly bargain-basement. The last RC car we sent to Mars cost more than $3 billion. That’s a hell of a droid. For that kind of money, we should be able to send a lot of people to Mars.’

Stashed in: The Universe, Awesome, The Multiverse, The Matrix, Mars!, The Internet is my religion., @elonmusk, space, Space!, SpaceX, SETI, Elon Musk

To save this post, select a stash from drop-down menu or type in a new one:

Everything he's doing can be seen as building toward this.

The solar and Tesla work are learning to efficiently generate power and store it.

The SpaceX work is learning how to efficiently put vehicles into space.

The question is, where is his competition?

But SpaceX does have competitors, both industry giants and scrappy startups alike. The company has just spent three years in a dogfight to become the first commercial space outfit to launch US astronauts to the space station. The awarding of this contract became more urgent in March, after the US sanctioned Russia for rolling tanks into Crimea. A week later, Russia’s Deputy Prime Minister Dmitry Rogozin quipped: ‘After analysing the sanctions against our space industry, I suggest the US deliver its astronauts to the ISS with a trampoline.’

SpaceX was an early favourite to win the contract, but it was never a lock. Critics have hammered the company for delaying launches, and in August it suffered a poorly timed mishap, when one of its test rockets blew up shortly after lift-off. In the end, NASA split the contract between Boeing and SpaceX, giving each six launches. Musk said that he would move into human missions, win or lose, but his progress would have been slowed considerably. The contract is only for short hops to lower Earth orbit, but it will give Musk the chance to demonstrate that he can do human spaceflight better than anyone else. And it will give him the money and reputation he needs to work up to a more extraordinary feat of engineering, one that has not been attempted in more than four decades: the safe transport of human beings to a new world.

Perhaps attempting to go into space should wait for us to make more technology advancements:

Some in the space exploration community, including no less a figure than the physicist Freeman Dyson, say that human spaceflight is folly in the short term. We humans are still in our technological infancy, after all, only a million years removed from the first control of fire. We have progressed quickly, from those first campfire sparks to the explosions we bottle in tall cylinders, to power our way out of Earth’s gravity well. But not everyone who sits atop our rockets returns safely. To seed a colony on another planet, we need astronaut safety to scale up. Perhaps we should park human missions for now, and explore space through the instruments of our cosmic drones, like the Voyager probe that recently slipped from the Solar System, to send us its impressions of interstellar space. We can resume human spaceflight later this century, or next, after we have reaped the full fruits of our current technological age. For all we know, revolutions in energy, artificial intelligence and materials science could be imminent. Any one of them would make human spaceflight a much easier affair.

Musk is on an epic run but he keeps pushing his luck:

It was a nice gesture, but in the year 2014 Elon Musk doesn’t need much of an introduction. Not since Steve Jobs has an American technologist captured the cultural imagination like Musk. There are tumblrs and subreddits devoted to him. He is the inspiration for Robert Downey Jr’s Iron Man. His life story has already become a legend. There is the alienated childhood in South Africa, the video game he invented at 12, his migration to the US in the mid-1990s. Then the quick rise, beginning when Musk sold his software company Zip2 for $300 million at the age of 28, and continuing three years later, when he dealt PayPal to eBay for $1.5 billion. And finally, the double down, when Musk decided idle hedonism wasn’t for him, and instead sank his fortune into a pair of unusually ambitious startups. With Tesla he would replace the world’s cars with electric vehicles, and with SpaceX he would colonise Mars. Automobile manufacturing and aerospace are mature industries, dominated by corporate behemoths with plush lobbying budgets and factories in all the right congressional districts. No matter. Musk would transform both, simultaneously, and he would do it within the space of a single generation.

Musk announced these plans shortly after the bursting of the first internet bubble, when many tech millionaires were regarded as mere lottery winners. People snickered. They called him a dilettante. But in 2010, he took Tesla public and became a billionaire many times over. SpaceX is still privately held, but it too is now worth billions, and Musk owns two-thirds of it outright. SpaceX makes its rockets from scratch at its Los Angeles factory, and it sells rides on them cheap, which is why its launch manifest is booked out for years. The company specialises in small satellite launches, and cargo runs to the space station, but it is now moving into the more mythic business of human spaceflight. In September, NASA selected SpaceX, along with Boeing, to become the first private company to launch astronauts to the International Space Station (ISS). Musk is on an epic run. But he keeps pushing his luck. In every interview, there is an outlandish new claim, a seeming impossibility, to which he attaches a tangible date. He is always giving you new reasons to doubt him.

Musk believes that going to Mars is as urgent and crucial as lifting billions out of poverty, or eradicating deadly disease:

‘I think there is a strong humanitarian argument for making life multi-planetary,’ he told me, ‘in order to safeguard the existence of humanity in the event that something catastrophic were to happen, in which case being poor or having a disease would be irrelevant, because humanity would be extinct. It would be like, “Good news, the problems of poverty and disease have been solved, but the bad news is there aren’t any humans left.”’

Musk has been pushing this line – Mars colonisation as extinction insurance – for more than a decade now, but not without pushback. ‘It’s funny,’ he told me. ‘Not everyone loves humanity. Either explicitly or implicitly, some people seem to think that humans are a blight on the Earth’s surface. They say things like, “Nature is so wonderful; things are always better in the countryside where there are no people around.” They imply that humanity and civilisation are less good than their absence. But I’m not in that school,’ he said. ‘I think we have a duty to maintain the light of consciousness, to make sure it continues into the future.’

One the search for intelligent life -- maybe we are in a simulation?

‘At our current rate of technological growth, humanity is on a path to be godlike in its capabilities,’ Musk told me. ‘You could bicycle to Alpha Centauri in a few hundred thousand years, and that’s nothing on an evolutionary scale. If an advanced civilisation existed at any place in this galaxy, at any point in the past 13.8 billion years, why isn’t it everywhere? Even if it moved slowly, it would only need something like .01 per cent of the Universe’s lifespan to be everywhere. So why isn’t it?’

‘If you look at our current technology level, something strange has to happen to civilisations, and I mean strange in a bad way’

Life’s early emergence on Earth, only half a billion years after the planet coalesced and cooled, suggests that microbes will arise wherever Earthlike conditions obtain. But even if every rocky planet were slick with unicellular slime, it wouldn’t follow that intelligent life is ubiquitous. Evolution is endlessly inventive, but it seems to feel its way toward certain features, like wings and eyes, which evolved independently on several branches of life’s tree. So far, technological intelligence has sprouted only from one twig. It’s possible that we are merely the first in a great wave of species that will take up tool-making and language. But it’s also possible that intelligence just isn’t one of natural selection’s preferred modules. We might think of ourselves as nature’s pinnacle, the inevitable endpoint of evolution, but beings like us could be too rare to ever encounter one another. Or we could be the ultimate cosmic outliers, lone minds in a Universe that stretches to infinity.

Musk has a more sinister theory. ‘The absence of any noticeable life may be an argument in favour of us being in a simulation,’ he told me. ‘Like when you’re playing an adventure game, and you can see the stars in the background, but you can’t ever get there. If it’s not a simulation, then maybe we’re in a lab and there’s some advanced alien civilisation that’s just watching how we develop, out of curiosity, like mould in a petri dish.’ Musk flipped through a few more possibilities, each packing a deeper existential chill than the last, until finally he came around to the import of it all. ‘If you look at our current technology level, something strange has to happen to civilisations, and I mean strange in a bad way,’ he said. ‘And it could be that there are a whole lot of dead, one-planet civilisations.’

We have a LONG time to figure out interstellar travel.

It is true that no civilisation can last long in this Universe if it stays confined to a single planet. The science of stellar evolution is complex, but we know that our mighty star, the ball of fusing hydrogen that anchors Earth and powers all of its life, will one day grow so large that its outer atmosphere will singe and sterilise our planet, and maybe even engulf it. This event is usually pegged for 5-10 billion years from now, and it tends to mark Armageddon in secular eschatologies. But our biosphere has little chance of surviving until then.

Five hundred million years from now, the Sun won’t be much larger than it is today but it will be swollen enough to start scorching the food chain. By then, Earth’s continents will have fused into a single landmass, a new Pangaea. As the Sun dilates, it will pour more and more radiation into the atmosphere, widening the daily swing between hot and cold. The supercontinent’s outer shell will suffer expansions and contractions of increasing violence. Its rocks will become brittle, and its silicates will begin to erode at unprecedented rates, taking carbon dioxide with them, down to the seafloor and into the deep crust. Eventually, the atmosphere will become so carbon-poor that trees will be unable to perform photosynthesis. The planet will be shorn of its forests, but a few plants will make a valiant last stand, until the brightening Sun kills them off, too, along with every animal that depends on them, which is to say every animal on Earth.

In a billion years, the oceans will have boiled away altogether, leaving empty trenches that are deeper than Everest is tall. Earth will become a new Venus, a hothouse planet where even the hardiest microbes cannot survive. And this is the optimistic scenario, for it assumes our biosphere will die of old age, and not something more sudden and stroke-like. After all, a billion years is a long time, long enough to make probabilistic space for all kinds of catastrophes, including those that have no precedent in human memory.

Of all the natural disasters that appear in our histories, the most severe are the floods, tales of global deluge inspired by the glacial melt at the end of the last Ice Age. There are a few stray glimmers of cosmic disasters, as in Plato’s Timaeus, when he tells the story of Phaeton, the son of the Sun god, who could not drive his father’s fiery chariot across the sky, and so crashed it into the Earth, burning the planet’s surface to a crisp. Plato writes: That story, as it is told, has the fashion of a legend, but the truth of it lies in the occurrence of a shift of the bodies in the heavens which move round the Earth, and a destruction of the things on the Earth by fierce fire, which recurs at long intervals.

A remarkable piece of ancient wisdom, but on the whole, human culture is too fresh an invention to have preserved the scarier stuff we find in the geological record. We have no tales of mile-wide asteroid strikes, or super volcanoes, or the deep freezes that occasionally turn our blue planet white. The biosphere has bounced back from each of these shocks, but not before sacrificing terrifying percentages of its species. And even its most remarkable feats of resilience are cold comfort, for the future might subject Earth to entirely novel experiences.

Some in the space exploration community, including no less a figure than Freeman Dyson, say that human spaceflight is folly in the short term

A billion years will give us four more orbits of the Milky Way galaxy, any one of which could bring us into collision with another star, or a supernova shockwave, or the incinerating beam of a gamma ray burst. We could swing into the path of a rogue planet, one of the billions that roam our galaxy darkly, like cosmic wrecking balls. Planet Earth could be edging up to the end of an unusually fortunate run.

If human beings are to survive these catastrophes, both the black swans and the certainties, we will need to do what life has always done: move in the service of survival. We will need to develop new capabilities, as our aquatic forebears once evolved air-gulping lungs, and bony fins for crude locomotion, struggling their way onto land. We will need to harness the spirit that moved our own species to trek into new continents, so that our recent ancestors could trickle out to islands and archipelagos, before crossing whole oceans, on their way to the very ends of this Earth. We will need to set out for new planets and eventually, new stars. But need we make haste?

I love this passage about him not wanting the sacred mission compromised:

reat migrations are often a matter of timing, of waiting for a strait to freeze, a sea to part, or a planet to draw near. The distance between Earth and Mars fluctuates widely as the two worlds whirl around in their orbits. At its furthest, Mars is a thousand times further than the Moon. But every 26 months they align, when the faster moving Earth swings into position between Mars and the Sun. When this alignment occurs where their orbits are tightest, Mars can come within 36 million miles, only 150 times further than the Moon. The next such window is only four years away, too soon to send a crewed ship. But in the mid-2030s, Mars will once again burn bright and orange in our sky, and by then Musk might be ready to send his first flurry of missions, to seed a citylike colony that he expects to be up and running by 2040.

‘SpaceX is only 12 years old now,’ he told me. ‘Between now and 2040, the company’s lifespan will have tripled. If we have linear improvement in technology, as opposed to logarithmic, then we should have a significant base on Mars, perhaps with thousands or tens of thousands of people.’

Musk told me this first group of settlers will need to pay their own way. ‘There needs to be an intersection of the set of people who wish to go, and the set of people who can afford to go,’ he said. ‘And that intersection of sets has to be enough to establish a self-sustaining civilisation. My rough guess is that for a half-million dollars, there are enough people that could afford to go and would want to go. But it’s not going to be a vacation jaunt. It’s going to be saving up all your money and selling all your stuff, like when people moved to the early American colonies.’

Even at that price, a one-way trip to Mars could be a tough sell. It would be fascinating to experience a deep space mission, to see the Earth receding behind you, to feel that you were afloat between worlds, to walk a strange desert under an alien sky. But one of the stars in that sky would be Earth, and one night, you might look up at it, through a telescope. At first, it might look like a blurry sapphire sphere, but as your eyes adjusted, you might be able to make out its oceans and continents. You might begin to long for its mountains and rivers, its flowers and trees, the astonishing array of life forms that roam its rainforests and seas. You might see a network of light sparkling on its dark side, and realise that its nodes were cities, where millions of lives are coming into collision. You might think of your family and friends, and the billions of other people you left behind, any one of which you could one day come to love.

The austerity of life on Mars might nurture these longings into regret, or even psychosis. From afar, the Martian desert evokes sweltering landscapes like the Sahara or the American West, but its climate is colder than the interior of Antarctica. Mars used to be wrapped in a thick blanket of atmosphere, but something in the depths of time blew it away, and the patchy remains are too thin to hold in heat or pressure. If you were to stroll onto its surface without a spacesuit, your eyes and skin would peel away like sheets of burning paper, and your blood would turn to steam, killing you within 30 seconds. Even in a suit you’d be vulnerable to cosmic radiation, and dust storms that occasionally coat the entire Martian globe, in clouds of skin-burning particulates, small enough to penetrate the tightest of seams. Never again would you feel the sun and wind on your skin, unmediated. Indeed, you would probably be living underground at first, in a windowless cave, only this time there would be no wild horses to sketch on the ceiling.

‘Even at a million people you’re assuming an incredible amount of productivity per person, because you would need to recreate the entire industrial base on Mars’

It is possible that Mars could one day be terraformed into an Earthly paradise, but not anytime soon. Even on our planet, whose natural systems we have studied for centuries, the weather is too complex to predict, and geoengineering is a frontier technology. We know we could tweak the Earth’s thermostat, by sending a silvery mist of aerosols into the stratosphere, to reflect away sunlight. But no one knows how to manufacture an entire atmosphere. On Mars, the best we can expect is a crude habitat, erected by robots. And even if they could build us a Four Seasons, near a glacier or easily mined ore, videoconferencing with Earth won’t be among the amenities. Messaging between the two planets will always be too delayed for any real-time give and take.

Cabin fever might set in quickly on Mars, and it might be contagious. Quarters would be tight. Governments would be fragile. Reinforcements would be seven months away. Colonies might descend into civil war, anarchy or even cannibalism, given the potential for scarcity. US colonies from Roanoke to Jamestown suffered similar social breakdowns, in environments that were Edenic by comparison. Some individuals might be able to endure these conditions for decades, or longer, but Musk told me he would need a million people to form a sustainable, genetically diverse civilisation.

‘Even at a million, you’re really assuming an incredible amount of productivity per person, because you would need to recreate the entire industrial base on Mars,’ he said. ‘You would need to mine and refine all of these different materials, in a much more difficult environment than Earth. There would be no trees growing. There would be no oxygen or nitrogen that are just there. No oil.’

I asked Musk how quickly a Mars colony could grow to a million people. ‘Excluding organic growth, if you could take 100 people at a time, you would need 10,000 trips to get to a million people,’ he said. ‘But you would also need a lot of cargo to support those people. In fact, your cargo to person ratio is going to be quite high. It would probably be 10 cargo trips for every human trip, so more like 100,000 trips. And we’re talking 100,000 trips of a giant spaceship.’

Musk told me all this could happen within a century. He is rumoured to have a design in mind for this giant spaceship, a concept vehicle he calls the Mars Colonial Transporter. But designing the ship is the easy part. The real challenge will be driving costs down far enough to launch whole fleets of them. Musk has an answer for that, too. He says he is working on a reusable rocket, one that can descend smoothly back to Earth after launch, and be ready to lift off again in an hour.

‘Rockets are the only form of transportation on Earth where the vehicle is built anew for each journey,’ he says. ‘What if you had to build a new plane for every flight?’ Musk’s progress on reusable rockets has been slow, but one of his prototypes has already flown a thousand metres into the air, before touching down softly again. He told me full reusability would reduce mission costs by two orders of magnitude, to tens of dollars per pound of weight. That’s the price that would convert Earth’s launch pads into machine guns, capable of firing streams of spacecraft at deep space destinations such as Mars. That’s the price that would launch his 100,000 ships.

All it takes is a glance over your shoulder, to the alien world of 1914, to remind yourself how much can happen in a century. But a million people on Mars sounds like a techno-futurist fantasy, one that would make Ray Kurzweil blush. And yet, the very existence of SpaceX is fantasy. After talking with Musk, I took a stroll through his cathedral-like rocket factory. I wandered the rows of chromed-out rocket engines, all agleam under blue neon. I saw white tubes as huge as stretched-out grain silos, with technicians crawling all over them, their ant-farm to-and-fro orchestrated from above, by managers in glass cube offices. Mix in the cleanroom jumpsuits and the EDM soundtrack, and the place felt something like Santa’s workshop as re-imagined by James Cameron. And to think: 12 years ago, this whole thrumming hive, this assembly line for spaceships, did not even exist, except as a hazy notion, a few electrified synapses in Musk’s overactive imagination.

Who am I to say what SpaceX will accomplish in a century’s time? For all I know Musk will be hailed as a visionary by then, a man of action without parallel in the annals of spaceflight. But there are darker scenarios, too. Musk could push the envelope, and see his first mission to Mars end in tragedy. Travel to Mars could prove elusive, like cold fusion. It might be one of those feats of technology that is always 25 years away. Musk could come to be seen as a cultural artifact, a personification of our post-Apollo hangover. An Icarus.

I asked Musk if he’d made peace with the possibility that his project could still be in its infancy, when death or infirmity forces him to pass the baton. ‘That’s what I expect will be the case,’ he said. ‘Make peace with it, of course. I’ve thought about that quite a lot. I’m trying to construct a world that maximises the probability that SpaceX continues its mission without me,’ he said. I nodded toward a cluster of frames on his wall, portraits of his five sons. ‘Will you give it to them?’ He told me he had planned to give it to an institution, or several, but now he thinks that a family influence might be stabilising. ‘I just don’t want it to be controlled by some private equity firm that would milk it for near-term revenue,’ he said. ‘That would be terrible.’

impressive and inspiring. 

Which part? The vision? The adherence to the mission? Actually going to Mars?

All of it. Elon Musk seems to be making mostly what he wants of this world, and that is neat. 

Yes. I like the part in 2008 when he's broke and deep in debt and nothing is working and it all might fall apart. The fact that he could climb out of that hole when he had nothing is frankly inspiring.

Interesting how interested Elon is in automating as much as possible:

You May Also Like: