"Microbial Dark Matter" --The Final Frontier: The Invisible Infrastructure of Life on Earth
Gigi the Hun stashed this in Genomics
Stashed in: Science!, Singularity!, The Singularity
"Microbes are the most abundant and diverse forms of life on Earth," said Woyke."They occupy every conceivable environmental niche from the extreme depths of the oceans to the driest of deserts. However, our knowledge about their habits and potential benefits has been hindered by the fact that the vast majority of these have not yet been cultivated in the laboratory. So we have only recently become aware of their roles in various ecosystems through cultivation-independent methods, such as metagenomics and single-cell genomics. What we are now discovering are unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the domains of life."
By employing next generation DNA sequencing of genomes isolated from single cells, great strides are being made in the monumental task of systematically bringing to light and filling in uncharted branches in the bacterial and archaeal tree of life. In an international collaboration led by the U.S. Department of Energy Joint Genome Institute (DOE JGI), the most recent findings from exploring microbial dark matter were published online July 14, 2013 in the journal Nature.
"Instead of wondering through the starkness of space, this achievement is more like the 21st Century equivalent of Lewis and Clark's expedition to open the American West," said Eddy Rubin, DOE JGI Director. "This is a powerful example of how the DOE JGI pioneers discovery, in that we can take a high throughput approach to isolating and characterizing single genomes from complex environmental samples of millions of cells, to provide a profound leap of understanding the microbial evolution on our planet. This is really the next great frontier."
This microbial dark matter campaign targeted uncultivated microbial cells from nine diverse habitats: Sakinaw Lake in British Columbia; the Etoliko Lagoon of western Greece; a sludge reactor in Mexico; the Gulf of Maine; off the north coast of Oahu, Hawaii, the Tropical Gyre in the south Atlantic; the East Pacific Rise; the Homestake Mine in South Dakota; and the Great Boiling Spring in Nevada. From these samples, the team laser-sorted 9,000 cells, from which they were able to reassemble and identify 201 distinct genomes, which then could be aligned to 28 major previously uncharted branches of the tree of life.
This is fascinating.
We are simultaneously exploring outer space, the oceans, the human brain, the microbiological ecosystem, genomes, and nanotechnology.
Singularity acceleration in every direction!
I have heard it said that genes are easy. Proteins, on the other hand ....
"After genomics and transcriptomics, proteomics is the next step in the study of biological systems. It is more complicated than genomics because an organism's genome is more or less constant, whereas the proteome differs from cell to cell and from time to time. Distinct genes are expressed in different cell types, which means that even the basic set of proteins that are produced in a cell needs to be identified."
7:26 PM Jul 15 2013