Sign up FAST! Login

Big Data is a vague term for a massive phenomenon that has rapidly become an obsession - are we making a Big Mistake?


http://www.ft.com/cms/s/2/21a6e7d8-b479-11e3-a09a-00144feabdc0.html#axzz2xUTtdI9E

Big data: are we making a big mistake?

Big data is a vague term for a massive phenomenon that has rapidly become an obsession with entrepreneurs, scientists, governments and the media

embarcadero skyway

Five years ago, a team of researchers from Google announced a remarkable achievement in one of the world’s top scientific journals, Nature. Without needing the results of a single medical check-up, they were nevertheless able to track the spread of influenza across the US. What’s more, they could do it more quickly than the Centers for Disease Control and Prevention (CDC). Google’s tracking had only a day’s delay, compared with the week or more it took for the CDC to assemble a picture based on reports from doctors’ surgeries. Google was faster because it was tracking the outbreak by finding a correlation between what people searched for online and whether they had flu symptoms.

Not only was “Google Flu Trends” quick, accurate and cheap, it was theory-free. Google’s engineers didn’t bother to develop a hypothesis about what search terms – “flu symptoms” or “pharmacies near me” – might be correlated with the spread of the disease itself. The Google team just took their top 50 million search terms and let the algorithms do the work.

The success of Google Flu Trends became emblematic of the hot new trend in business, technology and science: “Big Data”. What, excited journalists asked, can science learn from Google?

As with so many buzzwords, “big data” is a vague term, often thrown around by people with something to sell. Some emphasise the sheer scale of the data sets that now exist – the Large Hadron Collider’s computers, for example, store 15 petabytes a year of data, equivalent to about 15,000 years’ worth of your favourite music.

But the “big data” that interests many companies is what we might call “found data”, the digital exhaust of web searches, credit card payments and mobiles pinging the nearest phone mast. Google Flu Trends was built on found data and it’s this sort of data that ­interests me here. Such data sets can be even bigger than the LHC data – Facebook’s is – but just as noteworthy is the fact that they are cheap to collect relative to their size, they are a messy collage of datapoints collected for disparate purposes and they can be updated in real time. As our communication, leisure and commerce have moved to the internet and the internet has moved into our phones, our cars and even our glasses, life can be recorded and quantified in a way that would have been hard to imagine just a decade ago.

Cheerleaders for big data have made four exciting claims, each one reflected in the success of Google Flu Trends: that data analysis produces uncannily accurate results; that every single data point can be captured, making old statistical sampling techniques obsolete; that it is passé to fret about what causes what, because statistical correlation tells us what we need to know; and that scientific or statistical models aren’t needed because, to quote “The End of Theory”, a provocative essay published in Wired in 2008, “with enough data, the numbers speak for themselves”.

©Ed Nacional

Unfortunately, these four articles of faith are at best optimistic oversimplifications. At worst, according to David Spiegelhalter, Winton Professor of the Public Understanding of Risk at Cambridge university, they can be “complete bollocks. Absolute nonsense.”

Found data underpin the new internet economy as companies such as Google, Facebook and Amazon seek new ways to understand our lives through our data exhaust. Since Edward Snowden’s leaks about the scale and scope of US electronic surveillance it has become apparent that security services are just as fascinated with what they might learn from our data exhaust, too.

Consultants urge the data-naive to wise up to the potential of big data. A recent report from the McKinsey Global Institute reckoned that the US healthcare system could save $300bn a year – $1,000 per American – through better integration and analysis of the data produced by everything from clinical trials to health insurance transactions to smart running shoes

But while big data promise much to scientists, entrepreneurs and governments, they are doomed to disappoint us if we ignore some very familiar statistical lessons.

“There are a lot of small data problems that occur in big data,” says Spiegelhalter. “They don’t disappear because you’ve got lots of the stuff. They get worse.”

Four years after the original Nature paper was published, Nature News had sad tidings to convey: the latest flu outbreak had claimed an unexpected victim: Google Flu Trends. After reliably providing a swift and accurate account of flu outbreaks for several winters, the theory-free, data-rich model had lost its nose for where flu was going. Google’s model pointed to a severe outbreak but when the slow-and-steady data from the CDC arrived, they showed that Google’s estimates of the spread of flu-like illnesses were overstated by almost a factor of two.

The problem was that Google did not know – could not begin to know – what linked the search terms with the spread of flu. Google’s engineers weren’t trying to figure out what caused what. They were merely finding statistical patterns in the data. They cared about ­correlation rather than causation. This is common in big data analysis. Figuring out what causes what is hard (impossible, some say). Figuring out what is correlated with what is much cheaper and easier. That is why, according to Viktor Mayer-Schönberger and Kenneth Cukier’s book, Big Data, “causality won’t be discarded, but it is being knocked off its pedestal as the primary fountain of meaning”.

But a theory-free analysis of mere correlations is inevitably fragile. If you have no idea what is behind a correlation, you have no idea what might cause that correlation to break down. One explanation of the Flu Trends failure is that the news was full of scary stories about flu in December 2012 and that these stories provoked internet searches by people who were healthy. Another possible explanation is that Google’s own search algorithm moved the goalposts when it began automatically suggesting diagnoses when people entered medical symptoms.

©Ed NacionaGoogle Flu Trends will bounce back, recalibrated with fresh data – and rightly so. There are many reasons to be excited about the broader opportunities offered to us by the ease with which we can gather and analyse vast data sets. But unless we learn the lessons of this episode, we will find ourselves repeating it.

Statisticians have spent the past 200 years figuring out what traps lie in wait when we try to understand the world through data. The data are bigger, faster and cheaper these days – but we must not pretend that the traps have all been made safe. They have not.

The article goes on here, http://www.ft.com/cms/s/2/21a6e7d8-b479-11e3-a09a-00144feabdc0.html#axzz2xUTtdI9E 

Stashed in: Big Data!, Big Data

To save this post, select a stash from drop-down menu or type in a new one:

Data is not a problem. Wrong interpretation of data is a problem.

You May Also Like: