Julia is a high-level, high-performance dynamic programming language for technical computing
Mo Data stashed this in Big Data Technologies
Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical computing environments. It provides a sophisticated compiler, distributed parallel execution, numerical accuracy, and an extensive mathematical function library. The library, largely written in Julia itself, also integrates mature, best-of-breed C and Fortran libraries for linear algebra, random number generation, signal processing, and string processing. In addition, the Julia developer community is contributing a number of external packages through Julia’s built-in package manager at a rapid pace. IJulia, a collaboration between the IPython and Julia communities, provides a powerful browser-based graphical notebook interface to Julia.
Julia programs are organized around multiple dispatch; by defining functions and overloading them for different combinations of argument types, which can also be user-defined. For a more in-depth discussion of the rationale and advantages of Julia over other systems, see the following highlights or read the introduction in the online manual.
Julia’s LLVM-based just-in-time (JIT) compiler combined with the language’s design allow it to approach and often match the performance of C. Julia beats all other high-level systems (i.e. everything besides C and Fortran) on all micro-benchmarks. Relative performance between languages on other systems is similar.
Julia does not impose any particular style of parallelism on the user. Instead, it provides a number of key building blocks for distributed computation, making it flexible enough to support a number of styles of parallelism, and allowing users to add more.
The core of the Julia implementation is licensed under the MIT license. Various libraries used by the Julia environment include their own licenses such as the GPL, LGPL, and BSD (therefore the environment, which consists of the language, user interfaces, and libraries, is under the GPL). The language can be built as a shared library, so users can combine Julia with their own C/Fortran code or proprietary third-party libraries. Furthermore, Julia makes it simple to call external functions in C and Fortran shared libraries, without writing any wrapper code or even recompiling existing code. You can try calling external library functions directly from Julia’s interactive prompt, getting immediate feedback.
Stashed in: For Milo
2:12 AM Sep 16 2013