Better Than Human: Why Robots Will — And Must — Take Our Jobs
Geege Schuman stashed this in AI
Here’s why we’re at the inflection point: Machines are acquiring smarts.
We have preconceptions about how an intelligent robot should look and act, and these can blind us to what is already happening around us. To demand that artificial intelligence be humanlike is the same flawed logic as demanding that artificial flying be birdlike, with flapping wings. Robots will think different. To see how far artificial intelligence has penetrated our lives, we need to shed the idea that they will be humanlike.
http://www.wired.com/2012/12/ff-robots-will-take-our-jobs/
Three pages of must-read Hunter Walk
Stashed in: Robots!, @hunterwalk, Jobs, life, Singularity!, 3D Printers, Bots, @jimmyfallon, The Singularity, @hunterwalk, Robot Jobs
I've never heard the phrase "must-read Hunter Walk" before! :)
This was written by Kevin Kelly who is often a must read!
Oops - revise to "....must-read what Hunter Walk shared."
Ah. THAT makes more sense.
There have been other posts on PandaWhale about robots taking our jobs but this one is excellent.
Imagine that 7 out of 10 working Americans got fired tomorrow. What would they all do?
It’s hard to believe you’d have an economy at all if you gave pink slips to more than half the labor force. But that—in slow motion—is what the industrial revolution did to the workforce of the early 19th century. Two hundred years ago, 70 percent of American workers lived on the farm. Today automation has eliminated all but 1 percent of their jobs, replacing them (and their work animals) with machines. But the displaced workers did not sit idle. Instead, automation created hundreds of millions of jobs in entirely new fields. Those who once farmed were now manning the legions of factories that churned out farm equipment, cars, and other industrial products. Since then, wave upon wave of new occupations have arrived—appliance repairman, offset printer, food chemist, photographer, web designer—each building on previous automation. Today, the vast majority of us are doing jobs that no farmer from the 1800s could have imagined.
It may be hard to believe, but before the end of this century, 70 percent of today’s occupations will likewise be replaced by automation. Yes, dear reader, even you will have your job taken away by machines. In other words, robot replacement is just a matter of time. This upheaval is being led by a second wave of automation, one that is centered on artificial cognition, cheap sensors, machine learning, and distributed smarts. This deep automation will touch all jobs, from manual labor to knowledge work.
First, machines will consolidate their gains in already-automated industries. After robots finish replacing assembly line workers, they will replace the workers in warehouses. Speedy bots able to lift 150 pounds all day long will retrieve boxes, sort them, and load them onto trucks. Fruit and vegetable picking will continue to be robotized until no humans pick outside of specialty farms. Pharmacies will feature a single pill-dispensing robot in the back while the pharmacists focus on patient consulting. Next, the more dexterous chores of cleaning in offices and schools will be taken over by late-night robots, starting with easy-to-do floors and windows and eventually getting to toilets. The highway legs of long-haul trucking routes will be driven by robots embedded in truck cabs.
All the while, robots will continue their migration into white-collar work. We already have artificial intelligence in many of our machines; we just don’t call it that. Witness one piece of software by Narrative Science (profiled in issue 20.05) that can write newspaper stories about sports games directly from the games’ stats or generate a synopsis of a company’s stock performance each day from bits of text around the web. Any job dealing with reams of paperwork will be taken over by bots, including much of medicine. Even those areas of medicine not defined by paperwork, such as surgery, are becoming increasingly robotic. The rote tasks of any information-intensive job can be automated. It doesn’t matter if you are a doctor, lawyer, architect, reporter, or even programmer: The robot takeover will be epic.
Consider Baxter, a revolutionary new workbot from Rethink Robotics. Designed by Rodney Brooks, the former MIT professor who invented the best-selling Roomba vacuum cleaner and its descendants, Baxter is an early example of a new class of industrial robots created to work alongside humans. Baxter does not look impressive. It’s got big strong arms and a flatscreen display like many industrial bots. And Baxter’s hands perform repetitive manual tasks, just as factory robots do. But it’s different in three significant ways.
First, it can look around and indicate where it is looking by shifting the cartoon eyes on its head. It can perceive humans working near it and avoid injuring them. And workers can see whether it sees them. Previous industrial robots couldn’t do this, which means that working robots have to be physically segregated from humans. The typical factory robot is imprisoned within a chain-link fence or caged in a glass case. They are simply too dangerous to be around, because they are oblivious to others. This isolation prevents such robots from working in a small shop, where isolation is not practical. Optimally, workers should be able to get materials to and from the robot or to tweak its controls by hand throughout the workday; isolation makes that difficult. Baxter, however, is aware. Using force-feedback technology to feel if it is colliding with a person or another bot, it is courteous. You can plug it into a wall socket in your garage and easily work right next to it.
Self-driving robot?!
Second, anyone can train Baxter. It is not as fast, strong, or precise as other industrial robots, but it is smarter. To train the bot you simply grab its arms and guide them in the correct motions and sequence. It’s a kind of “watch me do this” routine. Baxter learns the procedure and then repeats it. Any worker is capable of this show-and-tell; you don’t even have to be literate. Previous workbots required highly educated engineers and crack programmers to write thousands of lines of code (and then debug them) in order to instruct the robot in the simplest change of task. The code has to be loaded in batch mode, i.e., in large, infrequent batches, because the robot cannot be reprogrammed while it is being used. Turns out the real cost of the typical industrial robot is not its hardware but its operation. Industrial robots cost $100,000-plus to purchase but can require four times that amount over a lifespan to program, train, and maintain. The costs pile up until the average lifetime bill for an industrial robot is half a million dollars or more.
Wow, that's a true breakthrough.
The third difference, then, is that Baxter is cheap. Priced at $22,000, it’s in a different league compared with the $500,000 total bill of its predecessors. It is as if those established robots, with their batch-mode programming, are the mainframe computers of the robot world, and Baxter is the first PC robot. It is likely to be dismissed as a hobbyist toy, missing key features like sub-millimeter precision, and not serious enough. But as with the PC, and unlike the mainframe, the user can interact with it directly, immediately, without waiting for experts to mediate—and use it for nonserious, even frivolous things. It’s cheap enough that small-time manufacturers can afford one to package up their wares or custom paint their product or run their 3-D printing machine. Or you could staff up a factory that makes iPhones.
It's 4.4% the cost of the predecessor. That's amazing.
5:01 PM Jun 14 2014